

Blood 142 (2023) 1408-1409

The 65th ASH Annual Meeting Abstracts

POSTER ABSTRACTS

603.LYMPHOID ONCOGENESIS: BASIC

High-Hyperdiploid Acute Lymphoblastic Leukemia in Children with LZTR1 Germline Variants

Triantafyllia Brozou, MD¹, Arndt Borkhardt, MD^{2,3}, Ute Fischer, PhD², Danielle Brandes², Layal Yasin², Oskar A. Haas, MD⁴, Stefanie Junk⁵, Martin Stanulla, MD⁶, Ammarah Anwar², Stavrieta Soura², Julia Hauer⁷, Franziska Auer, PhD⁸, Martin Dugas⁹, Carolin Walter¹⁰, Julian Varghese¹⁰, Tobias Reiff¹¹, Lisa Zipper¹¹, Anna Emilia Hoffmann², Rabea Wagener²

¹Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany

²Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany

³German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Duesseldorf, Germany

⁴St. Anna Children's Hospital, Vienna, Austria

⁵Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany

⁶Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany

⁷ Technical University of Munich, School of Medicine, Department of Pediatrics, Munich, Germany

⁸Technical University of Munich, Germany; School of Medicine; Department of Pediatrics, Munich, Germany

⁹Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany

¹⁰Institute of Medical Informatics, University of Münster, Münster, Germany

¹¹Institute of Genetics, Department of Biology, The Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Düsseldorf, Germany

Introduction

Firstly described in 1967, hyperdiploidy (HD) is the most frequent genetic abnormality in B-cell- precursor acute lymphoblastic leukemia (BCP-ALL) in children, comprising about 25% of all cases. A not yet exactly defined proportion have predisposing pathogenic germline variants in DNA repair pathway genes, chromatin remodeling factors, transcription factors regulating B-cell development (particularly *ETV6*) or receptor tyrosine kinases pathway genes like *RAS/RAF*. Among the latter, mutations have mostly been described in *PTPN11* and *SOS1*, but not yet in other components of this central regulatory hub of cellular communication. Germline loss-of-function (LOF) *LZTR1* mutations are typically linked to hereditary nerve sheath tumors. However, it remains largely unknown, if other tumor entities are associated with *LZTR1* LOF germline mutations, potentially broadening the spectrum of malignancies associated with RASopathies.

Aim

Our aim is to understand the frequency and the impact of *LZTR1* germline variants in HD BCP-ALL of childhood.

Material and Methods

We analyzed WES data of 283 children with BCP-ALL for the presence of pathogenic variants in the *LZTR1* cancer predisposition gene. For a part of the detected variants, we performed further functional analyses to investigate the effect of the alteration on protein function. We applied a *Drosophila* model that is particularly suited for functional evaluation of Ras pathway activity.

Results

We identified *LZTR1* germline variants in 10/283 (3.5%) patients (Figure 1). Interestingly, in 6 out of 283 (2.1%) children the *LZTR1* variants were classified as pathogenic/likely pathogenic (P/LP). The majority of patients (5/6) harboring a P/LP germline *LZTR1* variant presented with a HD BCP-ALL. Only two of our patients showed concomitant phenotypic features indicative of an underlying syndromic condition. Patient P1 presented with a HD BCP-ALL at the age of 9 years and mild psychomotor delay. Sequencing revealed a likely pathogenic variant (p.Arg283Trp) that was not yet reported in association with RASopathy syndromes. The second child P8, also diagnosed with a HD BCP-ALL, carried a well-known autosomal dominant mutation described in Noonan syndrome (NS) variant (p.Gly248Arg). The child was characterized by facial dysmorphism, as well as mild developmental delay, although a diagnosis of NS was not established prior to development of the BCP-ALL. The other three patients had no clinical peculiarities other than HD BCP-ALL.

POSTER ABSTRACTS

Session 603

We functionally characterized patient derived LZTR1 variants in dLztr1-depleted ISC. Like wild-type hLZTR1 ^{wt}, hLZTR1 ^{p.Arg283Trp} and hLZTR1 p.Lys761Arg restored control-like ISC lineage production, suggesting that hLZTR1 p.Arg283Trp and hLZTR1 p.Lys761Arg still regulate Ras ubiguitination. In contrast, hLZTR1 ^{p.Tyr535Ter} results in even 1.8-fold higher ISC lineage production than dLztr1-RNAi. Beyond ISC production as a readout, we employed a second experimental paradigm directly addressing Ras signalling activity with a translocating modified ERK sensor. In line with Ras activity control of LZTR1, hLZTR1^{wt} significantly reduced ERK activity, while the putatively LOF variant hLZTR1 ^{p.Tyr535Ter} variant significantly increased Ras pathway activation by 1.4-fold over controls. We also noticed that hLZTR1 ^{p.Tyr535Ter} induced extensive membrane blebbing and nuclear fragmentation of GFP positive cells likely indicating programmed cell death. Quantification of apoptotic cells revealed an 11.1-fold increase compared to controls, which was not observed for hLZTR1 ^{p.Arg283Trp} and hLZTR1 ^{p.Lys761Arg}.

Most notably, forced expression of hLZTR1 ^{p.Arg283Trp} andhLZTR1 ^{p.Tyr535Ter} increased mitotic recombination by 4-fold and 3.4fold, respectively, which was not observed for the hLZTR1 ^{p. Lys761Arg} variant.

Conclusion

In our cohort, approximately 2% of all children with BCP-ALL harboured a P/LP LZTR1 germline variation, not necessarily linked with clinical appearance of Noonan-syndrome-like features, but to the development of a high hyperdiploid karyotype. By applying a Drosophila model, we demonstrated that patient-derived LZTR1 germline variants affect RAS pathway activation, ERK accumulation, cell proliferation, DNA recombination and apoptosis. Figure 1:

Depiction of the ten LZTR1 variants detected in an unselected pediatric cohort of 283 BCP-ALL patients

Disclosures No relevant conflicts of interest to declare.

Figure 1

https://doi.org/10.1182/blood-2023-174500